

Оптимизация синхротронного излучения в задаче распространения лазерного импульса в режиме релятивистского самозахвата

О.Е. Вайс, М. Г. Лобок, В. Ю. Быченков

XVII Международная конференция «ЗАБАБАХИНСКИЕ НАУЧНЫЕ ЧТЕНИЯ»

19 - 23 мая 2025 г., г. Снежинск

21.05.2025

Генерация синхротронного (бетатронного) излучения при лазерно-плазменном ускорении

Бетатронные осцилляции электронов в поперечных полях плазменной полости при ускорении частиц ее продольным полем — генерация синхротронного излучения

[S. Corde, et al Rev. Mod. Phys. 85, 1]

спектрально-угловое распределение синхротронного излучения:

$$\frac{d^2 W}{d\Omega d\omega} = \frac{e^2}{4\pi^2 c} \left| \int_{-\infty}^{\infty} \frac{\left[\mathbf{n} \times \left[(\mathbf{n} - \boldsymbol{\beta}) \times \dot{\boldsymbol{\beta}} \right] \right]}{(1 - \boldsymbol{\beta} \cdot \mathbf{n})^2} e^{i\omega \{t - \mathbf{n} \cdot \mathbf{r}(t)/c\}} dt \right|^2,$$

Лазерно-плазменное ускорение электронов

Кильватерное ускорение (LWFA)

- Распространение лазерного импульса (ЛИ) в низкоплотной мишени
- $L < \lambda_p$ (ЛИ короче плазменной волны)
- моноэнергетичный пучок электронов (пКл)

Прямое лазерное ускорение (DLA)

- мишень околокритической плотности
- $L > \lambda_p$ (длинный лазерный импульс)
- экспоненциальный спектр электронов

E, MeV

[A. Pukhov, and J. Meyer-ter-Venh, Appl. Phys. B **74**, 355-361 (2002)]

Оценки для критической частоты синхротронного излучения

Режим релятивистского самозахвата

Условие согласования радиуса лазерного пучка, безразмерной амплитуды и плотности мишени:

$$R = \alpha \frac{c\sqrt{a_0}}{\omega_p} = \frac{\alpha c}{\omega_l} \sqrt{\frac{a_0 n_c}{n_e}}$$

Дифракционная расходимость уравновешивается релятивистской нелинейностью → радиус лазерного пучка примерно сохраняется при его распространении на многие рэлеевские длины.

Оптимизационные исследования по влиянию длительности лазерного импульса

Параметры лазерного импульса (Мультитера, НЦФМ): λ_/ = 0.8 мкм, 0.85 Дж

[E A Khazanov et al 2019 Phys.-Usp. **62** 1096]

Динамика лазерно-плазменной структуры

Ускорение электронов

характеристики электронного пучка

τ, фС	a_0	n_e/n_c	<e>20M9B></e>	<i>Q</i> _{>20МэВ}	<i>W</i> _{>20МэВ}	$\hbar\omega_{ m c}$
10	20.6	0.097	90 МэВ	4.7 нКл	400 мДж	100 кэВ
40	10.3	0.048	60 МэВ	3.2 нКл	183 мДж	50 кэВ

VNIIA ROSATOM

Эволюция генерации синхротронного излучения

t, фс

750 1000 1250 1500

t, фс

Энергетические характеристики излучения

	<i>τ</i> = 40 фc	<i>τ</i> = 10 фc	
критическая частота	50 кэВ	100 кэВ	
длительность генерации	1000 фс	250 фс	
ЯРКОСТЬ [фот./c/мм²/мрад²/0.1%b.w.]	10 ¹⁹ (100 кэВ)	10 ²⁰ (200 кэВ)	
ЯРКОСТЬ [фот./c/мм²/мрад²/0.1%b.w.]	10 ²⁰ (10 кэВ)	10 ²¹ (30 кэВ)	
коэффициент конверсии	3.5x10 ⁻⁵	15x10 ⁻⁵	

Полная энергия синхротронного излучения примерно в 4 раза выше для τ = 10 фс.

11

Компоненты импульса частиц

Угловое распределение энергии синхротронного излучения

распределение энергии между компонентами вторичного излучения

$$\zeta = rac{I_z - I_y}{I_z + I_y}$$
для τ = 10 фс: $\zeta \approx 0.74$ для τ = 40 фс: $\zeta \approx 0.77$

 $I_{y,z} = \frac{1}{T_{gen}} \iint E_{y,z}^2(t_l) dt_l dN$ – средняя интенсивность компоненты синхротронного излучения ¹²

Сравнение с прошлыми результатами

W_L/P_L	τ, фС	D_F , МКМ	<i>a</i> ₀	n _e /n _c	$\hbar\omega_c$	яркость*
190Дж / 7.2ПВт (XCELS) [1]	25	6.9	89	0.5	10 МэВ	8×10 ²²
20Дж / 625ТВт [2]	30	2.8	72	0.3	1 МэВ	3×10 ²²
2.2Дж / 70ТВт [2]	30	2.8	24	0.1	100 кэВ	1.2×10 ²²
0.85Дж / ТВт (MultiTera)	10	2.8	20.6	0.097	30 кэВ	1.1×10 ²¹
0.85Дж / 20ТВт (MultiTera)	40	2.8	10.3	0.048	10 кэВ	1.1×10 ²⁰

[1] Vais, O. E. et al. Bulletin of the Lebedev Physics Institute, 50(Suppl 7), S806-S814 (2023).[2] Lobok, M. G. et al. Physical Review E, 104(5), L053201 (2021).

* фот./с/мм²/мрад²/0.1%b.w

Заключение

Было показано, что сжатие 0.85 Дж лазерного импульса с 40 до 10 фс приводит к следующим изменениям характеристик синхротронного излучения:

- значительному уменьшению времени генерации,
- небольшому уменьшению анизотропии,
- уширению спектра в ≈ 2 раза,
- ≈4 кратное увеличение полной излучаемой энергии,
- увеличение яркости источника на порядок.

Таким образом, укорочение лазерного импульса оказывается оправданным с точки зрения генерации синхротронного излучения.

Результаты работы приняты для публикации в журнале Физика плазмы [*Физика плазмы* **51**, №4 (2025)]

Спасибо за внимание